69. The Ionisation Constants of Some Substituted Anilines and Phenols: A Test of the Hammett Relation.

By A. I. Biggs and R. A. Robinson.

The ionisation constants of aniline and 21 substituted anilines, and of phenol and 13 substituted phenols, in aqueous solution at 25° have been measured by the spectrophotometric method. The Hammett ρ parameter is found to be 2.889 for the aniline series and 2.229 for the phenol series, these parameters predicting the ionisation constants of 26 meta- and parasubstituted compounds with a mean deviation of 0.04 in $\mathrm{p} K$.
The ionisation constants of phenol, the cresols, nitrophenols, and methoxyphenols in aqueous solution at 25° have already been determined spectrophotometrically. ${ }^{1}$ Measurements are now reported on the twelve halogenophenols and on the corresponding halogenoand nitro-anilines, the toluidines, and the anisidines. The ionisation constant of m nitrophenol has been redetermined in borax buffers which we believe to be more reliable than the barbitone buffer used previously. Data are now available for 28 meta- and parasubstituted anilines and phenols and they can be used to test Hammett's relation: ${ }^{2}$ $\mathrm{p} K=\sigma \rho$, by using a set of σ values obtained by putting $\rho=\mathbf{1}$ for the substituted benzoic acids; with one exception, all the σ values needed can be got from the conductance measurements of Dippy et al.; ${ }^{3}$ the remaining acid, p-iodobenzoic acid, has been studied
${ }^{1}$ Biggs, Trans. Faraday Soc., 1954, 50, 800; , 1956, 52, 35; Robinson and Biggs, ibid., 1955, 51, 901.
${ }^{2}$ Hammett, " Physical Organic Chemistry," McGraw-Hill, New York, 1940.
${ }^{3}$ Dippy and Williams, J., 1934, 1888; Dippy, Williams, and Lewis, J., 1935, 343; Dippy and Lewis, $J ., 1936,644 ; 1937,1426$.
recently. ${ }^{4}$ It is hoped that the present work, in which all the ionisation constants are measured by the same method, will provide a useful supplement to Jaffe's recent survey ${ }^{5}$ of Hammett's relation.

Table 1 contains the results of the measurements on the substituted anilines and phenols, together with those obtained previously for phenol, the cresols, methoxyphenols,
pK of substituted anilinium ions and phenols versus $\boldsymbol{\sigma}$. The σ-scale is displaced 0.5 to the right in plotting points for the substituted phenols. The σ-values are derived from pK data for substituted benzoic acids except for p -nitrophenol and p -nitroaniline for which $\sigma=1.239$ is used and for p -fluorophenol where two points are plotted, one on the right with $\sigma=0.062$ derived from the $\mathrm{p} K$ value of p -fluorobenzoic acid and one on the left with $\sigma=-0.026$ derived from the $\mathrm{p} K$ value of p -fluoroaniline.

and o - and p-nitrophenol. For the anilines, it is the acid ionisation constant which is given, i.e., that of the acid conjugate to the substituted aniline. It is hoped that the results are accurate to the second decimal place but it is difficult to know if this has been achieved; we have found in the literature fifty $\mathrm{p} K$ values recorded which agree within 0.06 with those given in Table 1 , the mean difference being 0.02 , but it is not always possible to decide if it is the thermodynamic ionisation constant which has been reported and to what extent liquid-junction potentials have affected $\mathrm{p} K$ values derived from glasselectrode measurements.

A graph of $\Delta \mathrm{p} K$ of the substituted anilinium ions, i.e., $\mathrm{p} K$ (anilinium ion) - $\mathrm{p} K$ (substituted anilinium ion), against $\Delta \mathrm{p} K$ of the substituted benzoic acids is given in the Figure. Twelve of the points lie close to a straight line, the exceptions being p-nitroaniline (not shown on the graph) and p-fluoroaniline. The equation of the best straight line through the points is $\mathrm{p} K=0.023+2.889 \sigma$, so that the best value of the ρ parameter for the anilinium series is 2.889 and the $\mathrm{p} K$ values of substituted anilines can be represented by

[^0]$\mathrm{p} K=4.580-2.889 \sigma$, with a mean difference of 0.04 between observed and calculated values.

In the phenol series, as the Figure shows, twelve points lie close to a straight line, the value of $\sigma\left(p-\mathrm{NO}_{2}\right)$ being taken from the aniline series. The equation of the best straight line through the points is $\mathrm{p} K=0.079+2 \cdot 229_{\sigma}$, so that the best value of the ρ parameter for the phenol series is 2.229 and the $\mathrm{p} K$ values of substituted phenols can be represented by $\mathrm{pK}=9.919-2 \cdot 229 \sigma$, with a mean difference of 0.04 between observed and calculated values. m-Cyanoaniline and m-cyanophenol have been reported ${ }^{6}$ to have pK 2.746 and 8.608 respectively; the above equations predict 2.783 and $8.550, \sigma(m-\mathrm{CN})=0.614$ being used from the measurements of Briegleb and Bieber. ${ }^{7}$

There are, however, some anomalies which can be demonstrated by using the experimental data to calculate σ with $\rho=1,2 \cdot 889$, and $2 \cdot 229$ in the benzoic acid, aniline, and phenol series respectively; the following σ values are calculated for four para-substituents:

				Benzoic acid	Aniline	Phenol	
	$p-\mathrm{NO}_{2}$			0.778	$1 \cdot 239$	1-243	
	$p-\mathrm{OMe}$			-0.268	-0.264	-0.130	
	$p-\mathrm{F}$			0.062	-0.026	$0 \cdot 005$	
	p-CN			0.671	0.983	$0 \cdot 874$	
	$\begin{gathered} \text { TABLE } \\ o \end{gathered}$	1. $\mathrm{p} K V$ m	$\begin{gathered} \text { ues of subs } \\ p \end{gathered}$	situted aniline a	and pheno o	$\text { s at } 25^{\circ} .$	p
Aniline		(4.60)		Phenol		(10.00)	
Fluoroaniline	3.20	$3 \cdot 59(+1)$	$4 \cdot 65$	Fluorophenol	$8.70{ }_{5}$	$9 \cdot 21$ (-4)	9.91
Chloroaniline	$2 \cdot 65$	$3 \cdot 52(-2)$	$3.98(-5)$	Chlorophenol	.. $8 \cdot 53$	$9 \cdot 13(-4)$	$9 \cdot 42$ (0)
Bromoaniline	.. 2.53	$3 \cdot 58(-8)$	$3 \cdot 86(+5)$	Bromophenol	.. 8.44	$9 \cdot 03(+2)$	$9 \cdot 36(+4)$
Iodoaniline.	$2 \cdot 60$	$3 \cdot 61(-4)$	3.78 (+ 1)	Iodophenol..	8.51	$9.06(+7)$	$9 \cdot 30{ }^{\text {5 }}$ (0)
Toluidine	$4 \cdot 45$	$4.73(+5)$	5.08 (0)	Cresol $10 \cdot 29$	10.09 (-2)	$10 \cdot 26(+4)$
Anisidine	$4 \cdot 52$	$4 \cdot 23(+1)$	$5 \cdot 34(+1)$	Methoxyphen	ol 9.98	$9 \cdot 65(+1)$	10.21
Nitroaniline	-0.26	$2 \cdot 46(+7)$	$1 \cdot 00$	Nitrophenol	$7 \cdot 21$	$8 \cdot 388_{5}(-5)$	$7 \cdot 15(+1)$

The figures in parentheses give the difference in $\mathrm{p} K\left(\times 10^{3}\right)$ between the observed value and that calculated by: $\mathrm{pK}=4.580-2.889 \sigma$ for substituted anilinium ions, and $\mathrm{pK}=9.919-2.229 \sigma$ for substituted phenols, the difference being recorded as positive if the calculated value is greater than the observed.

Table 2. Buffer solutions.

Solution		pH	$\log \gamma_{3}$	Solution		pH	$\log \gamma_{1}$
Formate buffer: $x \mathrm{M}-\mathrm{H} \cdot \mathrm{CO}_{2} \mathrm{H}+1 \cdot 247 x \mathrm{M}-\mathrm{H} \cdot \mathrm{CO}_{2} \mathrm{~K}$ $+1.079 x \mathrm{M}-\mathrm{KCl}$ (see ref. a)				Borax buffer: 50 ml .0 .025 m -borax $+x \mathrm{ml}$. $0 \cdot 1 \mathrm{~m}-\mathrm{NaOH}$ diluted to 100 ml . (see ref. c)			
Formate A	$x=0.025$	$3 \cdot 77$	0.087	Borax G	$x=15 \cdot 0$	$9 \cdot 80$	0.077
Formate B	$x=0.010$	$3 \cdot 80$	0.063	Borax H	$x=16.7$	9.90	0.078
Acetate buffer: $\underset{\substack{\text { (see ref. } 9 \text {) }}}{x \mathrm{C} \mathrm{H}_{4} \mathrm{O}_{2}}+x \mathrm{M}-\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2} \mathrm{Na}$				Borax buffer (see ref. b)			
Acetate A	$x=0 \cdot 1$	$4 \cdot 66$	$0 \cdot 102$	0.025m-Borax		$9 \cdot 17$	0.083
Acetate B	$x=0.05$	4.68	0.083	0.05m-Borax		$9 \cdot 20$	$0 \cdot 102$
Acetate C	$x=0.01$	$4 \cdot 72$	0.044	Carbonate buffer (see ref. b)			
Succinate bu	$\underset{\text { (see ref. }}{x \mathrm{M}-\mathrm{C}_{4} \mathrm{H}_{5} \mathrm{O}}$	$+x$	$\mathrm{H}_{4} \mathrm{O}_{4} \mathrm{Na}_{2}$	$\begin{gathered} 0.025 \mathrm{M}-\mathrm{NaHC} \\ \mathrm{Na}_{2} \mathrm{CO}_{3} \end{gathered}$	$+0.025 \mathrm{~m}-$	10.02	$0 \cdot 102$
Succinate A	$x=0.05$	$5 \cdot 34$	$0 \cdot 117$				
Succinate B	$x=0.025$	$5 \cdot 40$	$0 \cdot 102$				
Succinate C	$x=0.01$	$5 \cdot 47$	0.077				

Borax buffer: 50 ml .0 .025 m -borax $+x \mathrm{ml}$. $0 \cdot 1 \mathrm{~m}-\mathrm{HCl}$ diluted to 100 ml . (see ref. c)

Borax A	$x=16.6$	8.40	0.065
Borax B	$x=15 \cdot 2$	8.50	0.065
Borax C	$x=13.5$	8.60	0.065
Borax D	$x=11 \cdot 6$	8.70	0.065
Borax E	$x=9 \cdot 4$	8.80	0.065
Borax F	$x=7.1$	8.90	0.065

a Calc. from data of Harned and Embree (J. Amer. Chem. Soc., 1934, 56, 1042). ${ }^{\text {b }}$ Manov, DeLollis, Lindvall, and Acree, J. Res. Nat. Bur. Stand., 1946, 36, 543; Bates, Pinching, and Smith, ibid., 1950, 45, 418. © Bates and Bower, ibid., 1955, 55, 197; Analyt. Chem., 1956, 28, 1322.

[^1]Table 3. Ionization constants at 25°.

Aniline: $5.3 \times 10^{-4} \mathrm{~N} ; 281 \mathrm{~m} \mu ; D_{1}=0$;

	$D_{2}=0.716$		
Buffer	D	$\log \alpha /(1-\alpha)$	$\mathrm{p} K$
Acetate A	0.338	-0.049	4.606
Acetate B	0.356	-0.005	4.606
Acetate C	0.400	0.102	4.598

o-Fluoroaniline: $3.4 \times 10^{-4} \mathrm{~N} ; 277 \mathrm{~m} \mu$;
$D_{1}=0 ; D_{2}=0.550$

		$\log \alpha /$		
Solution	D	$(1-\alpha)$	$-\log m_{\mathbf{H}^{+}}$	$\mathrm{p} K$
$0.0025 \mathrm{M}-\mathrm{HCl}$	0.122	-0.545	2.651	3.196
$0.0020 \mathrm{M}-\mathrm{HCl}$	0.147	-0.438	2.757	3.195
$0.0015 \mathrm{M}-\mathrm{HCl}$	0.180	-0.313	2.896	3.209
$0.0010 \mathrm{M}-\mathrm{HCl}$	0.238	-0.118	$\mathbf{3 . 0 6 6}$	$\mathbf{3 . 2 1 1}$

m-Fluoroaniline: $4.5 \times 10^{-4} \mathrm{~N} ; 278 \mathrm{~m} \mu ;$			
Buffer	$D_{1}=0.013 ; D_{2}=0.662$		
Formate A	0.375	$\log \alpha /(1-\alpha)$	$\mathrm{p} K$
Formate B	0.402	0.101	3.594
Form	0.175	3.582	

p-Fluoroaniline: $4.5 \times 10^{-4} \mathrm{~N} ; 287 \mathrm{~m} \mu ;$			
Buffer	$D_{1}=0.001 ; D_{2}=0.809$		
Acetate A	D	$\log \alpha /(1-\alpha)$	$\mathrm{p} K$
Acetate B	0.377	-0.104	$4 \cdot 660$
A	-0.047	4.647	

o-Chloroaniline: $3.9 \times 10^{-4} \mathrm{~N} ; 285 \mathrm{~m} \mu$; $D_{1}=0.002 ; \quad D_{2}=0.767$

	$\log \alpha /$			
Solution	D	$(1-\alpha)$	$-\log m_{\mathrm{H}^{+}}$	$\mathrm{p} K$
$0.005 \mathrm{M}-\mathrm{HCl}$	0.248	-0.324	2.325	2.649
$0.004 \mathrm{M}-\mathrm{HCl}$	0.288	-0.224	2.425	2.649
$0.003 \mathrm{M}-\mathrm{HCl}$	0.347	-0.085	2.555	2.640
$0.002 \mathrm{M}-\mathrm{HCl}$	0.426	0.095	2.739	2.644

m-Chloroaniline: $3.9 \times 10^{-4} \mathrm{~N}$; $287 \mathrm{~m} \mu$;

m-Chloroaniline:			
$D_{1}=0.004 ; D_{2}=0.646$			
Buffer	D	$\log \alpha /(1-\alpha)$	$\mathrm{p} K$
Formate A	0.388	0.173	3.522
Formate B	0.412	0.242	3.515

p-Chloroaniline: $3.9 \times 10^{-4} \mathrm{~N} ; 292 \mathrm{~m} \mu ;$			
$D_{1}=0.001 ; D_{2}=1.100 ; 2 \mathrm{~cm}$. cells			
Buffer	D	$\log \alpha /(1-\alpha)$	$\mathrm{p} K$
Formate A	0.375	-0.287	$\mathbf{3 . 9 8 0}$
Formate B	0.413	-0.222	3.971

o-Bromoaniline: $2.9 \times 10^{-4} \mathrm{~N} ; 287 \mathrm{~m} \mu$;$D_{1}=0.003 ; D_{2}=0.624$				
Solution	D	$\log \alpha$		
$0.00318 \mathrm{~m}-\mathrm{HCl}$	$0 \cdot 308$	-0.015	$2 \cdot 518$	2.533
$0.00265 \mathrm{M}-\mathrm{HCl} 0$	$0 \cdot 337$	$0 \cdot 066$	$2 \cdot 599$	$2 \cdot 533$
$0.00212 \mathrm{~m}-\mathrm{HCl}$	$0 \cdot 372$	$0 \cdot 166$	$2 \cdot 69$	$2 \cdot 533$
m-Bromoaniline: $2.9 \times 10^{-4} \mathrm{~N} ; 286 \mathrm{~m} \mu$ $D_{1}=0.004 ; ~ D_{2}=0.524$.				
Buffer	D	$\log \alpha$	($1-\alpha$)	p
Formate A	0.313		166	$3 \cdot 527$
Formate B	$0 \cdot 330$. 225	3.527
p-Bromoaniline: $2.9 \times 10^{-4} \mathrm{~N}$; $291 \mathrm{~m} \mu$; $D_{1}=0.000 ; D_{2}=0.768$.				
Buffer	D	$\log 0$	(1- α)	p K
Formate A	$0 \cdot 306$		$0 \cdot 179$	3.870
Formate B	0.336		$0 \cdot 109$	3.857

o-Iodoaniline: $2.3 \times 10^{-4} \mathrm{~N} ; 290 \mathrm{~m} \mu ;$ $D_{1}=0.017 ; D_{2}=0.548$.

		$\log \alpha /$		
Solution	D	$(1-\alpha)$	$-\log m_{\mathrm{H}^{+}}$	$\mathrm{p} K$
$0.00262 \mathrm{M}-\mathrm{HCl}$	0.295	0.041	2.600	2.559
$0.00210 \mathrm{M}-\mathrm{HCl}$	0.325	0.140	2.698	2.558
$0.00158 \mathrm{M}-\mathrm{HCl}$	0.361	0.265	2.824	2.559

m-Iodoaniline: $2.3 \times 10^{-4} \mathrm{~N} ; 290 \mathrm{~m} \mu$; $D_{1}=0.014 ; \quad D_{2}=0.477$.

Buffer	D	$\log \alpha /(1-\alpha)$	$\mathrm{p} K$
Formate A	0.265	0.073	$\mathbf{3 . 6 1 8}$
Formate B	0.285	0.150	$\mathbf{3 . 5 0 8}$

p-Iodoaniline: $4.6 \times 10^{-4} \mathrm{~N} ; 290 \mathrm{~m} \mu$;

$$
D_{1}=0.030 ; D_{2}=0.658
$$

Formate A	0.309	-0.097	3.791
Formate B	0.336	-0.022	3.777

| $(0.00106 \mathrm{~m}-\mathrm{HCl})$ | 0.154 | -0.609 |
| :--- | :--- | :--- |$\quad 3.769$

o-Toluidine: $4.7 \times 10^{-4} \mathrm{~N} ; 281 \mathrm{~m} \mu$; $D_{1}=0.005 ; D_{2}=0.794$

Acetate A	0.448	$0 \cdot 107$	4.450
Acetate B	0.467	$0 \cdot 150$	$4 \cdot 451$
Acetate C	0.512	0.255	4.445

m-Toluidine: $4.7 \times 10^{-4} \mathrm{~N} ; 281 \mathrm{~m} \mu$;

$$
D_{1}=0.002 ; D_{2}=0.644
$$

Acetate A	0.258	-0.178	4.734
Acetate B	0.274	-0.134	4.734
Acetate C	0.311	-0.032	4.715

p-Toluidine: $4.7 \times 10^{-4} \mathrm{~N} ; 287 \mathrm{~m} \mu$;

$$
D_{1}=0.000 ; D_{2}=0.674
$$

Acetate A	0.154	-0.529	5.084
Acetate B	0.168	-0.479	5.077
	0.197	-0.384	5.068

Acetate C	0.197	-0.384	5.068

o-Anisidine: $2 \times 10^{-4} \mathrm{~N} ; 282 \mathrm{~m} \mu$;

$$
D_{1}=0.054 ; \quad D_{2}=0.547
$$

Acetate A	0.309	0.030	4.526
Acetate B	0.322	0.076	4.522

m-Anisidine: $2 \times 10^{-4} \mathrm{~N} ; 283 \mathrm{~m} \mu$; $D_{1}=0.050 ; ~ D_{2}=0.393$
$\begin{array}{llll}\text { Acetate A } & 0.281 & 0.314 & 4.242 \\ & 0.291 & 0.373 & 4.226\end{array}$
$\begin{array}{llll}\text { Acetate B } & 0.291 & 0.373 & \mathbf{4 . 2 2 6}\end{array}$
p-Anisidine: $2.9 \times 10^{-4} \mathrm{~N} ; 295 \mathrm{~m} \mu$;

$$
D_{1}=0.002 ; D_{2}=0.601
$$

Succinate A	0.264	-0.019	5.338
Succinate B	0.287	-0.042	5.349
Succinate C	0.323	0.063	5.345

o-Nitroaniline: $1.8 \times 10^{-4} \mathrm{~N} ; 418 \mathrm{~m} \mu$;

$$
D_{1}=0.000 ; D_{2}=0.802
$$

Solution	D	$\log \alpha /(1-\alpha)$	$-\mathrm{p} K$ (apparent)
$1.0 \mathrm{M}-\mathrm{HCl}$	0.446	0.098	0.098
$0.9 \mathrm{M}-\mathrm{HCl}$	0.474	0.160	0.114
$0.8 \mathrm{M}-\mathrm{HCl}$	0.504	0.228	0.131
$0.7 \mathrm{M}-\mathrm{HCl}$	0.535	0.302	0.147
$0.6 \mathrm{M}-\mathrm{HCl}$	0.567	0.383	0.161
$0.5 \mathrm{M}-\mathrm{HCl}$	0.600	0.473	0.172
$0.4 \mathrm{M}-\mathrm{HCl}$	0.638	0.590	0.192
$0.3 \mathrm{M}-\mathrm{HCl}$	0.677	0.734	0.211
$0.2 \mathrm{M}-\mathrm{HCl}$	0.717	0.926	0.227

$\mathrm{p} K$ (apparent) extrapolated to zero ionic strength $=-0.263$.

Table 3. (Continued.)

m-Nitroaniline: $3.6 \times 10^{-4} \mathrm{~N} ; 360 \mathrm{~m} \mu$;$D_{1}=0.038 ; D_{2}=0.513$				m-Chlorophenol: $1.9 \times 10^{-4} \mathrm{~N} ; 300 \mathrm{~m} \mu$; $D_{1}=0.087 ; D_{2}=0.480$			
				Buffer	D	$\log \alpha /(1-\alpha)$	$\mathrm{p} K$
Solution		($1-\alpha$) $-\log m_{\mathrm{H}^{+}}$	+ $\mathrm{p} K$	0.025 m -Bora	0.312	$0 \cdot 127$. 126
$0.0040 \mathrm{~m}-\mathrm{HCl}$	0.266	$-0.035 \quad 2.419$	$2 \cdot 454$	0.050 m -Borax	0.320	0.163	$9 \cdot 134$
$0.00262 \mathrm{M}-\mathrm{HCl}$	0.313	${ }_{0}^{0.141} \quad 2.608$	2.467	p-Chlorophenol: $1.9 \times 10^{-4} \mathrm{~N} ; 300 \mathrm{~m} \mu$ $D_{1}=0.010 ; \quad D_{2}=0.453$			
${ }_{0}^{0.0025 M-H C l}$	${ }_{0}^{0.320}$	$\begin{array}{ll}0.165 & 2.628 \\ 0.242\end{array}$	${ }^{2} \cdot 463$				
${ }_{0}^{0.0021 \mathrm{M}-\mathrm{HCl}} 0$	0.340 0.347	$\begin{array}{ll}0.242 & 2.706 \\ 0.270 & \\ 2.727\end{array}$	2.464 2.457	0.025 m -Borax		-0.161	$9 \cdot 415$
$0.0020 \mathrm{~m}-\mathrm{HCl}$	0.347	$\begin{array}{ll}0.270 & 2.727\end{array}$	$2 \cdot 457$	${ }_{0}^{0.050 \mathrm{~m}-\text {-Borax }}$	${ }_{0}^{0.200}$	${ }_{0}^{0.124}$	${ }_{9}^{9 \cdot 421}$
p-Nitroaniline: $7.2 \times 10^{-5} \mathrm{~N} ; 382 \mathrm{~m} \mu$; $D_{1}=0.002 ; \quad D_{2}=0.925$				$\begin{aligned} & o \text {-Bromophenol: } 2.9 \times 10^{-4} \mathrm{~N} ; 296 \mathrm{~m} \mu ; \\ & D_{1}=0.002 ; D_{2}=1.153 \end{aligned}$			
Solution	D	$\log \alpha /(1-\alpha)$	(apparent)	Borax A	0.586	0.013	8.442
$0.1156 \mathrm{~m}-\mathrm{HCl}$	$0 \cdot 421$	--0.080	1.017	Borax B	0.653	0.115	$8 \cdot 440$
$0.0779 \mathrm{M}-\mathrm{HCl}$	0.515	0.097	1.012	ax C	0.713	0.208	$8 \cdot 448$
$0.0516 \mathrm{~m}-\mathrm{HCl}$	$0 \cdot 606$	$0 \cdot 277$	1.010	m-Bromophenol: $2.9 \times 10^{-4} \mathrm{~N} ; 294 \mathrm{~m} \mu$; $D_{1}=0.018 ; D_{2}=0.462$			
carbonate buffer at 280,290 , and $300 \mathrm{~m} \mu$ confirms the value of $\mathrm{pK} 9 \cdot 998$.							
				0.025 m -Borax	$0 \cdot 297$	$0 \cdot 228$	9.024
				0.050 m -Borax	0.305	$0 \cdot 262$	9.035
o-Fluorophenol: $4.5 \times 10^{-4} \mathrm{~N} ; 284 \mathrm{~m} \mu$; $D_{1}=0.023 ; \quad D_{2}=1.005$				p-Bromophenol: $2.9 \times 10^{-4} \mathrm{~N}$; $299 \mathrm{~m} \mu$; $D_{1}=0.027 ; ~ D_{2}=0.663$			
Buffer	D	$\log \alpha /(1-\alpha)$	p K	25m-Borax	0.308	-0.102	9.355
Borax D	0.545	0.055	8.700	050m-Bora	$0 \cdot 32$	-0.06	36
Borax E	0.596	$0 \cdot 147$	8.710	o-Iodophenol: $1.2 \times 10^{-4} \mathrm{~N} ; 298 \mathrm{~m} \mu$;$D_{1}=0.018 ; \quad D_{2}=0.489$			
m-Fluorophenol: $4.5 \times 10^{-4} \mathrm{~N} ; 283 \mathrm{~m} \mu$; $D_{1}=0.038 ; ~ D_{2}=1.107$							
				Borax B	$0 \cdot 268$	0.054	$8 \cdot 506$
0.025 m -Borax	0.603	0.050	9.202	Borax	$0 \cdot 29$	$0 \cdot 151$	8.509
0.050 m -Borax	0.626	0.087	9.209	m-Iodophenol: $2.3 \times 10^{-4} \mathrm{~N} ; 295 \mathrm{~m} \mu$;$D_{1}=0.043 ; \quad D_{2}=0.756$			
p-Fluorophenol: $2 \times 10^{-4} \mathrm{~N} ; 298 \mathrm{~m} \mu$; $D_{1}=0.018 ; D_{2}=0.598$							
				0.025 m-Borax	0.480	$0 \cdot 200$	9.053
Borax G	$0 \cdot 295$	-0.039	$9 \cdot 910$	0.050 m -Bora	0.493	$0 \cdot 233$	9.064
Borax H	0.328	0.060	9.911	$\begin{gathered} p \text {-Iodophenol: } 2.3 \times 10^{-4} \mathrm{~N} ; 295 \mathrm{~m} \mu ; \\ D_{1}=0.125 ; D_{2}=0.504 \end{gathered}$			
Borax I	0.362	0.164	$9 \cdot 906$				
Carbonate	$0 \cdot 377$	0.201	9.918	0.025 m -Borax		$\mathrm{D}_{2}=0.048$	9.301
Similar measurements at 277 and $240 \mathrm{~m} \mu$ give $\mathrm{p} K=9.907$ and 9.905 respectively.				0.050 m -Borax	0.312	-0.011	$9 \cdot 308$
				m-Nitrophenol: $3.6 \times 10^{-4} \mathrm{~N} ; 420 \mathrm{~m} \mu$; $D_{1}=0.008 ; D_{2}=0.452$			
$\begin{gathered} o \text {-Chlorophenol: } 1.9 \times 10^{-4} \mathrm{~N} ; 300 \mathrm{~m} \mu ; \\ D_{1}=0.002 ; D_{2}=0.593 \end{gathered}$							
				Borax B	0.272	0.071	$8 \cdot 831$
Borax C	$0 \cdot 339$	0.123	8.536			0.166	8.38
Borax D	0.372	0.224	8.535				
Borax E	$0 \cdot 403$	$0 \cdot 324$	8.535				
Borax F	$0 \cdot 429$	$0 \cdot 416$	8.543				

Thus for $p-\mathrm{NO}_{2}$ substitution the σ-value which holds for both the aniline and the phenol series does not hold in the benzoic acid series, whereas for p-OMe substitution the σ-value which is valid in both the benzoic acid and the aniline series does not hold in the phenol series. Again, three different σ-values are needed for $p-\mathrm{CN}$ substitution, whilst for $p-\mathrm{F}$ substitution, although the σ-values in the aniline and phenol series are not very far apart, they differ considerably from that in the benzoic acid series.

Experimental

Measurements were made with a " Uvispek" instrument in an air-conditioned room at $25^{\circ} \pm 0.05^{\circ}$; a few experiments were made to show that a change of 0.05° corresponds to a change of about 0.007 in pK . Unless otherwise mentioned in Table 1, measurements were made with 1 cm . cells. The anilines and phenols were the purest specimens obtainable; these were recrystallised from water wherever possible; otherwise, they were distilled in a stream of nitrogen at low pressure and the middle fractions taken. Table 2 lists the buffers used for the phenols and for those anilines with $\mathrm{pK}>3.5$; for the four o-halogenoanilines and the three nitrophenols, i.e., the anilines with $\mathrm{p} K<3 \cdot 5$, hydrochloric acid was added to the aniline solutions. The ionisation constants calculated from the experimental data proved independent
of the concentration of the buffer solution or of the concentration of hydrochloric acid added, except for o - and p-nitroaniline. o-Nitroaniline showed considerable variation in " apparent" $\mathrm{p} K$ with hydrochloric acid concentration, which is not surprising as the implicit assumption that $\log \gamma_{\mathbf{H}^{+}} / \gamma_{\mathrm{RNH}^{+}}=0$ is unlikely to be valid at the high concentrations of hydrochloric acid that had to be used; the " apparent" $\mathrm{p} K$, however, varied linearly with acid concentration and could be extrapolated easily. The " apparent" $\mathrm{p} K$ of p-nitroaniline showed less variation with acid concentration.

Table 3 gives the experimental details, the symbols having the meaning given in previous papers. ${ }^{4,8}$

We acknowledge with gratitude the assistance of Professor R. L. Huang who provided us with purified specimens of p-fluorophenol and m-iodophenol.

Department of Chemistry, Petaling Jaya, Federation of Malaya,
University of Malaya, Singapore. \quad [Received, February 10th, 1960.]
${ }^{8}$ Biggs, $J ., 1956,2485$.

[^0]: ${ }^{4}$ Robinson and Ang, $J ., 1959,2314$.
 ${ }^{5}$ Jaffé, Chem. Rev., 1953, 53, 191.

[^1]: ${ }^{6}$ Fickling, Fischer, Mann, Packer, and Vaughan, J. Amer. Chem. Soc., 1959, 81, 4226.
 7 Briegleb and Bieber, Z. Elcktrochem., 1951, 55, 250.

